Asymptotically efficient estimation of the conditional expected shortfall

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Nadaraya-Watson estimation of conditional expected shortfall

This paper addresses the problem of nonparametric estimation of the conditional expected shortfall (CES) which has gained popularity in financial risk management. We propose a new nonparametric estimator of the CES. The proposed estimator is defined as a conditional counterpart of the sample average estimator of the unconditional expected shortfall, where the empirical distribution function is ...

متن کامل

Nonparametric Expectile Regression for Conditional Autoregressive Expected Shortfall Estimation

In this chapter, we estimate the Expected Shortfall (ES) in conditional autoregressive expectile models by using a nonparametric multiple expectile regression via gradient tree boosting. This approach has the advantages generated by the flexibility of not having to rely on data assumptions and avoids the drawbacks and fragilities of a restrictive estimator such as Historical Simulation. We cons...

متن کامل

Nonparametric Estimation of Expected Shortfall

The paper evaluates the properties of nonparametric estimators of the expected shortfall, an increasingly popular risk measure in financial risk management. It is found that the existing kernel estimator based on a single bandwidth does not offer variance reduction, which is surprising considering that kernel smoothing reduces the variance of estimators for the value at risk and the distributio...

متن کامل

Expected shortfall estimation using kernel machines †

In this paper we study four kernel machines for estimating expected shortfall, which are constructed through combinations of support vector quantile regression (SVQR), restricted SVQR (RSVQR), least squares support vector machine (LS-SVM) and support vector expectile regression (SVER). These kernel machines have obvious advantages such that they achieve nonlinear model but they do not require t...

متن کامل

Nonparametric estimation of conditional value-at-risk and expected shortfall based on extreme value theory

Abstract. We propose nonparametric estimators for conditional value-at-risk (VaR) and expected shortfall (ES) associated with conditional distributions of a series of returns on a financial asset. The return series and the conditioning covariates, which may include lagged returns and other exogenous variables, are assumed to be strong mixing and follow a fully nonparametric conditional location...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics & Data Analysis

سال: 2012

ISSN: 0167-9473

DOI: 10.1016/j.csda.2011.02.020